High energy pA collisions in CGC

Kirill Tuchin

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

RIKEN BNL Research Center Nuclei as heavy as bulls through collision generate new states of matter

Hard Probes 2006, CA

Quasiclassical picture of pA collisions

- δ Kinematic regime: x<<1, α<<1
 </p>
- Ocherence length of qq pair

$$l_c \approx \frac{1}{k_-^q + k_-^{\bar{q}} - k_-^h} = \frac{1}{M_N x} \gg R_A$$
 with $x = \frac{m_\perp}{\sqrt{s}} e^{-y}$

The dipole-nucleus cross section $\sigma_{qar q}=2\int d^2b\,{
m Im}N(x,\underline{r},\underline{b})$

Quasiclassical-approximation: $\alpha_s \ln(1/x) \ll 1$ $\alpha_s^2 A^{1/3} \sim 1$

$${\rm Im}N(x,\underline{r},\underline{b})=1-\exp\left(-\underline{r}^2Q_s^2/4\right) \quad {\rm A.\ Mueller,} \quad {\rm McLerran-Venugopalan}$$

Linear evolution

Linear evolution regime

$$\alpha_s \ln(1/x) \sim 1$$
 $\alpha_s^2 A^{1/3} \ll 1$ (BFKL)

com:
$$\frac{1}{2}$$
 α_s^2

$$\alpha_s^3 \ln(1/x)$$

$$\partial_y N(\underline{x}_{01}) = \frac{\alpha_s}{2\pi} \int d^2x_2 \frac{\underline{x}_{01}^2}{\underline{x}_{12}^2 \underline{x}_{20}^2} \left(N(\underline{x}_{12}) + N(\underline{x}_{20}) - N(\underline{x}_{01}) \right)$$

High parton density

Non-linear evolution regime

$$\alpha_s \ln(1/x) \sim 1, \quad \alpha_s^2 A^{1/3} \sim 1$$

$$\partial_y N(\underline{x}_{01}) = \frac{\alpha_s}{2\pi} \int d^2x_2 \frac{\underline{x}_{01}^2}{\underline{x}_{12}^2 \underline{x}_{20}^2} \left(N(\underline{x}_{12}) + N(\underline{x}_{20}) - N(\underline{x}_{01}) - N(\underline{x}_{12}) N(\underline{x}_{20}) \right)$$

Balitski, Kovchegov

The saturation scale
$$\,Q_s^2 = \Lambda^2\,A^{1/3}e^{\lambda y}e^{\lambda s/2}\,$$

Effective theory of high parton density QCD is "Color Glass Condensate".
JIMWLK

Geometric scaling in nuclei

Scaling of DIS cross section with Q/Q_s is the direct signal of high parton density.

Stasto, Golec-Biernat, Kwiecinski Armesto, Salgado, Wiedemann

Kovchegov, A. Mueller; Kovchegov, KT

Gluon interaction with the nucleus is instanteneous:

$$l_c = \frac{k_+}{k_\perp^2} \gg R_A$$

$$\frac{d\sigma^{pA}}{d^2kdy} = \frac{2\alpha_s}{C_F k^2} \int d^2q \,\phi_p(\underline{q}, Y - y) \,\phi_A(\underline{k} - \underline{q}, y)$$

where
$$\phi(x,\underline{k}^2)=rac{C_F}{lpha_s(2\pi)^3}\int d^2b\,d^2z\,e^{-i\underline{k}\cdot\underline{z}}\nabla_z^2N_G(\underline{z},\underline{b},y)$$

Kovchegov, A. Mueller; Kovchegov, KT

Gluon interaction with the nucleus is instanteneous:

$$l_c = \frac{k_+}{k_\perp^2} \gg R_A$$

$$\frac{d\sigma^{pA}}{d^2kdy} = \frac{2\alpha_s}{C_F k^2} \int d^2q \,\phi_p(\underline{q}, Y - y) \,\phi_A(\underline{k} - \underline{q}, y)$$

where
$$\phi(x,\underline{k}^2)=rac{C_F}{lpha_s(2\pi)^3}\int d^2b\,d^2z\,e^{-i\underline{k}\cdot\underline{z}}
abla_z^2N_G(\underline{z},\underline{b},y)$$

Kovchegov, A. Mueller; Kovchegov, KT

Gluon interaction with the nucleus is instanteneous:

$$l_c = \frac{k_+}{k_\perp^2} \gg R_A$$

$$\frac{d\sigma^{pA}}{d^2kdy} = \frac{2\alpha_s}{C_F k^2} \int d^2q \,\phi_p(\underline{q}, Y - y) \,\phi_A(\underline{k} - \underline{q}, y)$$

where
$$\phi(x,\underline{k}^2)=rac{C_F}{lpha_s(2\pi)^3}\int d^2b\,d^2z\,e^{-i\underline{k}\cdot\underline{z}}\nabla_z^2N_G(\underline{z},\underline{b},y)$$

Kovchegov, A. Mueller; Kovchegov, KT

$$l_c = \frac{k_+}{k_\perp^2} \gg R_A$$

$$\frac{d\sigma^{pA}}{d^2kdy} = \frac{2\alpha_s}{C_F k^2} \int d^2q \,\phi_p(\underline{q}, Y - y) \,\phi_A(\underline{k} - \underline{q}, y)$$

where
$$\phi(x,\underline{k}^2)=rac{C_F}{lpha_s(2\pi)^3}\int d^2b\,d^2z\,e^{-i\underline{k}\cdot\underline{z}}
abla_z^2N_G(\underline{z},\underline{b},y)$$

k_T-factorization (Levin, Ryskin)

In spite of explicit factorization breaking by each individual diagram, their sum can be factorized. (Kovchegov, KT) AGK rules?

Factorized gluon distribution

Weizsäcker-Williams gluon distribution

No gauge is known in which the factorization would be explicit.

CGC vs shadowing models

o it's all about parameters

 \mathcal{X}

How small is x? Is $l_c >> R_A$?

Is A large enough to make higher twist effects important?

$$\alpha_s \ln(1/x)$$

Is x small enough to generate quantum evolution?

- Shadowing models take into account only one high parton density effect at a time but match well onto $x\sim1$, Q→∞.

Hadron multiplicities in dAu at RHIC

Total multiplicities (Kharzeev, Levin, Nardi)

Multiplicity by other models

Pseudo-rapidity asymmetry

FIG. 3: (Color online) The ratio of charged hadron spectra in the backward rapidity to forward rapidity region for minimum bias and ZDC-d neutron-tagged events. Calculations based on pQCD [3] (y=-1/y=1) for minimum bias events are also shown for cases with no shadowing (solid curve), HIJING shadowing (dashed curve), and EKS shadowing (dot-dashed curve). Calculations in a gluon saturation model [13] for minimum bias events are shown for $0.5 < |\eta| < 1.0$ (filled circles with solid line) and for $0.0 < |\eta| < 0.5$ (open squares with solid line).

by STAR

Hadron spectra in dAu

Kharzeev, Kovchegov, KT

data by BRAHMS

Hadron spectra in dAu

Kharzeev, Kovchegov, KT

data by BRAHMS

see also Baier, Kovner, Wiedemann

Physics behind Cronin and suppression

Kharzeev, Kovchegov, KT

In a quasi-classical approximation Cronin enhancement appears due to multiple rescattering of partons in nucleus.
AntiShadowing

Shadowing: small k, small x

Most gluons are here

see also
Baier, Kovner,
Wiedamann;
Blaizot, Gelis,
Venugopalan;
Iancu, Itakura,
Triantafyllopoulos

Gluons are redistributed from low to high k_T

Physics behind Cronin and suppression

Due to the non-linear evolution effects at high energies/forward rapidities (low x) gluons in dA get stronger suppressed than in pp.

$$\phi(\underline{k},y) \sim \left(\frac{Q_s^2}{k^2}\right)^{\gamma}$$
 $\gamma \approx \frac{1}{2} \Rightarrow \phi \propto A^{1/6}$ instead of $A^{1/3}$

Kharzeev, Levin, McLerran

Kharzeev, Kovchegov, KT

see also
Baier, Kovner,
Wiedamann;
Blaizot, Gelis,
Venugopalan;
Iancu, Itakura,
Triantafyllopoulos

Other models

Fragmentation effect?

Fragmentation
effect due to large
x₁ does not depend
on energy while the
saturation effect
does ⇒

Increase dAu energy to verify

FIG. 3: Ratio of negative particles production rates in d-Au and pp collisions as function of pr. Data are from [1], solid and dashed curves correspond to calculations with the diquark size 0.3 fm and 0.4 fm respectively.

Kopeliovich et al

pA at LHC

Midrapidity at LHC looks similar to y≈3 at RHIC.

Heavy Quark Production in pA collisions

coherence length of qq pair

$$l_c \approx \frac{E_g}{(2m_q)^2} = \frac{1}{2M_N x_2}$$

where
$$x_2 = \frac{m_T}{\sqrt{s}}e^{-y}$$

- $m{\circ}$ For charm at RHIC $l_c=15e^y\,\mathrm{fm}$
- lacktriangle At forward rapidity $l_c \gg R_A$

Initial vs final state interactions

Initial vs final state interactions

Dipole-nucleus interactions

Quasi-classical approximation:

$$-P(\underline{x}, \underline{x}_0) = -\frac{1}{8}\underline{x}^2 Q_s^2 - \frac{1}{8}\underline{x}_0^2 Q_s^2 + \frac{1}{8N_c^2} (\underline{x} - \underline{x}_0)^2 Q_s^2$$

$$Q_s^2 = \frac{2\pi^2 \alpha_s N_c}{C_F} \rho T(\underline{b}) x G(x, 1/\underline{x}^2)$$

see also Kopeliovich, Tarasov

Single inclusive quark x-section

KT; Kovchegov, KT

Size of the initial dipole

time orderings

Number of dipoles in proton
$$\frac{d\sigma}{d^2k dy_1 dy_2}(z_{01}) = \begin{cases} \text{Total rapidity Quark rapidity} \\ \frac{1}{2(2\pi)^4} \int d^2z_0' d^2z_1' n_1(\underline{z}_0, \underline{z}_1; \underline{z}_0', \underline{z}_1'; Y - y) \, d^2x_1 d^2x_2 d^2y_1 e^{-i\underline{k}\cdot(\underline{x}_1 - \underline{y}_1)} \\ \times \int_0^1 d\alpha \sum_{i,j=1}^3 \sum_{k,l=0}^1 (-1)^{k+l} \Phi_{ij}(\underline{x}_1 - \underline{z}_k, \underline{x}_2 - \underline{z}_k; \underline{y}_1 - \underline{z}_l, \underline{x}_2 - \underline{z}_l; \alpha) \; \Xi_{ij}(\underline{x}_1, \underline{x}_2, \underline{z}_k; \underline{y}_1, \underline{x}_2, \underline{z}_l; \alpha, y) \\ \text{qq wave functions for different} \end{cases}$$
 Rescattering factors

see also Blaizot, Gelis, Venugopalan

Aligned jet configuration

- Assume that quark energy >> anti-quark energy
- Then, $l_c(G)\gg l_c(qar q)\gg R_A$
- © Gluon emission and pair production factorize: the light cone wave function = $\psi_G \otimes \psi_{qq}$
- Although the quark production x-section is quite simple in this case (only 7-dim integral :) it applies only in the situation when q and anti-q are separated by large rapidity gap.
- Exact result: see Kovchegov, KT, 06

k_T-factorization

Levin, Ryskin, Shabelsky, Shuvaev, Catani, Ciafaloni, Hautmann, Collins, Ellis All:1991

KT-factorization assumes that qq production process can be factorized out from the wave functions of proton and nucleus

Cross section is much easier to calculate

$$\frac{d\sigma}{d^2k dy_1 dy_2} = \int d^2q_1 \int d^2q_2 \phi_p(\underline{q}_1, y_1) A_{gg}(s, t, u, q_1, q_2) \phi_A(q_2, y_2)$$

It was proved for single inclusive gluon production in pA (Kovchegov, K.T.);

How good is k-factorization?

Fujii, Gelis, Venugopalan

Ratio of the BGV result to the k_T-factorization:

How good is k-factorization?

Fujii, Gelis, Venugopalan

Ratio of the BGV result to the k_T-factorization:

How good is k-factorization?

Fujii, Gelis, Venugopalan

Ratio of the BGV result to the k_T-factorization:

Application to RHIC phenomenology

A model based on k_T-factorization

Kharzeev, KT

Suppression onsets when $Q_s>m$. Production pattern of light and heavy quarks becomes the same.

Data from PHENIX

Both suppression at forward rapidity and enhancement at backward one are consistent with CGC.

Presented by R. Averbeck at RHIC & AGC Users' Meeting 27

Heavy Quark Spectrum

J/ψ production

Kharzeev and KT

"xf-scaling"

more details in the talk by Alex Kovner

Azimuthal correlations

Azimuthal correlations due to CGC are different from pQCD: they are depleted since the classical fields commute. Prediction (Kharzeev, Levin, McLerran): suppression of back-to-back correlation at low x.

Azimuthal correlations

at forward rapidity:

backward-forward correlations:

Exact calculation of the double inclusive gluon production see Jalilian-Marian, Kovchegov.

see also Baier, Kovner, Nardi, Wiedemann

Back-to-back correlations

by STAR

Back-to-back correlations

from HIJING

Azimuthal correlations in AuAu, dAu and pp

There is a significant "flow" component in dA and pp at large p_T (Kovchegov, KT)

Di-lepton production

- Advantages of di-leptons:
 - no need to know the fragmentation functions;
 - do not strongly interact.

0.8 0.7 — pA — dA (HKM deuteron shadowing) — 0.5 — 0.5 — 0.5 — 0.3

R_{dA}(M) integrated over transverse momenta of lepton pair (Jalilian-Marian)

2.0

M (GeV)

 $R_{dA}(A)$ at $k_T=5$ GeV, M=2 and y=3 (Baier, Mueller, Schiff)

Kopeliovich, Schafer, Tarasov, (photons*); Jalilian-Marian; Baier, Mueller, Schiff

Summary: signatures of CGC in p(d)A

- Hadron spectra and multiplicities
- Heavy quark spectra and multiplicities (preliminary)
- J/ψ ±
- Correlations ±
- Di-leptons?
- Energy dependence LHC.